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Quantum dots pose an interesting problem in which three complications- disorder,
interaction and finite size- come together. I describe progress that can be made by
combining Random Matrix Theory (RMT) and the Renormalization Group (RG) to
attack the problem.
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1. THE DOT

It is a pleasure to be able to celebrate the birthdays of these two eternal youths,
Pierre and Jim. One cannot work in condensed matter for long without running
into their numerous contributions. In my case I also had the pleasure of running
into Pierre himself fairly regularly over the last decade when he was Yale’s Deputy
Provost for Sciences. As chairman of Physics, I have locked horns with Pierre on
numerous occasions over dollars. He would generally begin by responding to all
requests with a No, earning the title Dr. No. This was just Pierre saying “Hello, let
us talk.” I learnt that his No was a No in the complex plane that could adiabatically
be rotated into a Yes. One just had to know how to handle Pierre Pressure. It is also
here that I became acquainted with his practice of “scale invariant arguments,” the
idea being that you should not be able to tell from the intensity of the arguments
how much we are arguing about. In fact, as time went by, I noticed counter-intuitive
scaling violations. Thus, when I took a request for over a million dollars to him,
he would read the requested figure from the right to left and launch a vigorous and
intense interrogation on the cents requested. By the time we crossed the decimal
point to the units place he would have already begun to lose interest and when
we got to the millions, he was ready to agree to anything. This is how Pierre has
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allocated millions for science in general at Yale and for Yale Physics in particular.
I was however sworn to secrecy, that I would not tell the world that deep down he
was a pussy cat, because he liked this tough in-your-face-Bell-Labs image. But
now that he has left Yale, the truth about “deep-pockets” can be revealed.

Anyway Pierre and Jim, I see many more productive years of Physics ahead
and wish you all the best.

Now for my subject of quantum dots. I ask you not to take offense at the title,
it is just my way of preempting any hostile questions from experts.

For our purposes, the dot is an island of size L (in the nanoscale) within which
electrons can live. The boundary of the dot is sufficiently irregular that classical
motion is chaotic (at and around the Fermi energy). The dot is otherwise dirt-free
and motion within is ballistic. Electrons are allowed to tunnel in and out of the
dot and the conductance G is measured as a function of the gate voltage Vg. The
challenge is to describe the observed(1) series of peak positions and heights on a
statistical basis.(2−4)

The relevant energy scales are �, the average single particle level spacing and
ET, the Thouless energy defined by ET = h̄vF/L where vF is the Fermi velocity.
The Thouless energy has a dual significance for us. First if the dot is connected
to big fat leads, electrons will cross the dot in a time L/vF and energy will be
uncertain by an amount ET. Thus

g � ET

�
(1)

single particle levels will contribute to conductance and g will be the dimensional
conductance. (Note that in the experiments we consider the leads are weakly
coupled and the levels are sharp.)

The second significance of ET is that within that band we will assume energy
levels and wave functions obey statistics given by RMT.(5) This in turns means two
things. First, if we find the exact energy levels εα and wavefunction φα and plot
the level spacings within ET (of say the Fermi energy), the resulting distribution
will be indistinguishable from that of a random matrix of the same symmetry.
The second RMT result needs some elaboration. Consider a circular Fermi system
and a concentric annulus of width ET. In the bulk, this region contains an infinite
number of k states. If we now go the dot of size L , the best we can do is wave
packets centered at some k and of width 1/L in both directions. It is readily
verified that we can form g such “Wheel-of-fortune” (WOF) states (as in Fig. 1))
within this annulus.(6) Suppose we expand the g exact eigenstates labeled by an
index α in this WOF basis labeled by k via the functions

〈k|α〉 = φα(k). (2)
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Fig. 1. The Wheel-of-fortune states within a band of energy ET concentric with the Fermi circle.
There are roughly g such states of mean momenta k centered on g equally spaced points on the Fermi
circle. The WOF states are obtained by chopping off plane waves of the desired mean momentum at
the edges of the dot. These states are nearly orthonormal.

Then a typical RMT assumption made here is that

〈
φα(k)φβ(k′)

〉 = δkk′δαβ

g
(3)

where the 〈· · ·〉 denote describe an average over an ensemble of similar dots. Note
that this is the minimal correlation we must have: in each sample, α and k label
two orthonormal bases, so that if we set k = k′ and sum over k we must get δαβ ,
sample by sample. (The same goes for setting α = β and summing over them to
get δkk′ .) Similar correlators exist for products of four wavefunctions and these
have the form of Wick’s theorem.

Before proceeding we address a common question. Is there is any reason to
believe that the g exact eigenstates within ET can be expanded in terms of the g
WOF states? We have verified(6) the following in a numerical study of a “billiard,”
or dot. First we manufactured the g states of mean momentum k by choosing g
equally spaced points on the Fermi circle and then chopping off the plane waves of
these momenta at the edges of the billiard. (We chose g = 37 in our study.) Then
we verified that these wavefunctions were orthonormal to an excellent accuracy.
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Finally we asked how good a basis these functions formed for expanding the α

states within ET. We found the exact eigenstate at the middle of the Thouless band,
i.e, at the Fermi energy, retained more than 99.9% of its norm upon projection
to the WOF basis. As we left the center of the band the overlap decreased and
dropped to around 50% at the edges. Thus our results are most reliable only deep
deep within the Thouless band.

A simple starting hamiltonian for describing dot physics is that of free fermions:

H = H0 =
∑

α

ψ†
αψαεα. (4)

If we vary the gate voltage on the dot we expect to see some conductance when
the Fermi energy of the electrons in the leads lines up with one of the levels εα .
Thus we expect the peak spacings to be equal to the typical single particle spacing
�. The actual value is much larger because when we add an electron to the dot it
has electrostatic interactions with the ones already there. This is just the capacitive
charging energy Q2/2C . So we need to add a term u0 N 2, where N is the number
of electrons on the dot. (Usually this charging energy is subtracted out when data
showing conductance versus gate voltage are displayed.) If we take into account
the spin of the electrons another term −J0S2 is called for, where S is the total spin
of the dot. This term reflects the fact that electrons of parallel spins will avoid
each other due to the Pauli principle, and the repulsive interaction energy will be
lowered at the cost of increased kinetic energy. Thus the hamiltonian at this point
takes the form(9−11)

HU =
∑

α

ψ†
αψαεα + u0 N 2 − J0S2, (5)

where the subscript U stands for “universal” and where a third interaction term
pertaining to superconducting fluctuations has been dropped.

Some proponents of the universal hamiltonian give the following argument for
why no other interactions need be considered. Suppose we take any other familiar
interaction and transcribe it to the exact basis. The random wavefunctions φα

will appear and lead to terms with wildly fluctuating signs and phases, with zero
ensemble average. Since deviations from the zero average will be down by 1/g we
can drop them at large g. By contrast the two terms kept commute with H0 and
survive ensemble averaging.

While I am impressed by the success of HU in explaining a lot of data, this is
not so for the accompanying arguments. In particular I think ensemble averages
should be performed not on the hamiltonian but calculated observables. I also do
not know that a term should be dropped because it is small, since it could prove
relevant in the Renormalization Group (RG) sense. I prefer therefore to let the RG
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tell us what interactions are important. I turn to a description of an approach based
on the RG.

As a prelude, I describe my work(7) on the clean system and in the bulk.
Consider a two-dimensional Fermi surface, a circle with Fermi momentum KF.
RG tells us to focus on low energy physics by integrating out high energy degrees
of freedom. For bosons and relativistic fermions, this means small momentum.
For the fermions however low energy means near the Fermi surface. That is, if I
tap the system with a hammer a few fermions near the Fermi surface will jump
out, neither those electrons deep in the sea nor the levels far above KF will be
involved. Thus we must eliminate all states but those within a bandwidth � of KF.
What theory will we be left with? The story is long, but the following synopsis
will suffice for now. Consider the limit � → 0. Consider an interaction vertex
u(K1, . . . , K4) with incoming momenta K1 and K2 and outgoing momenta K3

and K4. We may take them to lie on the Fermi circle as � → 0, and thus reduce
them to four angles θ1 . . . θ4. Normally momentum conservation would allow us
to consider just three angles. But if the momenta all come from a circle, then θ3

and θ4 must equal θ1 and θ2 up to a permutation, a result I urge you to verify.
Thus u a is function of just θ1 and θ2 and by rotational invariance, a function of
their difference, θ . This function u(θ ) is none other than Landau’s F function,(8)

derived here using RG. Often one writes

u(θ ) =
∑

m

um cos(mθ ) (6)

where um are the Landau parameters. The corresponding interaction is

HL =
∑

θ1,θ ′
n(θ )n(θ ′)um cos

(
m(θ − θ ′)

)
(7)

Note that if only u0 �= 0, we get the u0 N 2 interaction of HU. If we include spin,
there are spin density-spin density interactions and J0 corresponds to keeping just
the zeorth harmonic. So we need to ask if and when m > 0 terms can be ignored.

The first crucial step towards this goal was taken by Murthy and Mathur.(12)

Their ideas was as follows.

• Step 1: Use the clean system RG described earlier(7) (eliminating momen-
tum states on either side of the Fermi surface) to eliminate all states far
from the Fermi surface till one comes down to the Thouless band, that is,
within ET of EF.

• Step 2: Switch to the exact basis states of the chaotic dot, writing the kinetic
and interaction terms in this basis. Run the RG by eliminating exact energy
eigenstates within ET.
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While this looks like a reasonable plan, it is not clear how it is going to be
executed since knowledge of the exact eigenfunctions is needed to even write
down the Landau interaction in the disordered basis:

Vαβγ δ = �

4

∑

kk′
u(θ − θ ′)

(
φ∗

α(k)φ∗
β(k′) − φ∗

α(k′)φ∗
β(k)

)

×(φγ (k′)φδ(k) − φγ (k)φδ(k′)) (8)

(where k and k′ take g possible values) and to evaluate the flow to one loop.
Remarkably it is possible to proceed for the following reason. Let us first assume
only one um is nonzero. If we write down expression for the one loop flow, four-fold
products of the unknown wave functions appear. Now one argues that since many
terms enter the sum, there is self-averaging. In other words one can show that if
the diagram for any one realization is replaced by the ensemble average, the error
is down by a power of 1/g, and thus ignorable in this large g calculation. Thus no
details of the exact wavefunctions are involved in computing the flow! What they
find is the remarkable result that the renormalized Vαβγ δ is itself equivalent to just
a single um , but of different size. The flow of um is given by

dum

d ln �
= −um − cu2

m m �= 0 (9)

where c is independent of m and of order unity.
Note that u0 does not flow and that just as in the BCS flow of the clean system,(7)

different m’s do not mix to this order. If spin were included J0 wouldn’t flow either.
The flow implies that all positive um’s flow to zero as do negative ones with

um > u∗, the fixed point of the flow. Thus all points to the right of u∗ flow to HU.
The universal hamiltonian is thus an RG fixed point with a domain of attraction
of order unity.

The work of Murthy and Mathur raises two questions: is the fixed point u∗ of
order unity to be trusted (coming as it does from a one loop calculation) and what
happens to the left of it? This was answered by Murthy and myself.(13) We found
that at large g one did not have to rely on RG once one got to down to ET using
Step 1. Instead the theory could be solved by saddle point methods employed in
1/N expansions with g playing the role of N . The results became exact as g → ∞.
I give only a few details here referring you to the above references and ref. 14.

Suppose we have a theory with N flavors defined schematically by a path
integral:

Z =
∫

dψdψ̄eψ̄ Dψ+u(ψ̄ψ)2
(10)

where D stands for the quadratic kinetic energy term, and the sum over flavors or
integral over spacetime is suppressed. If we now introduce a Hubbard-Stratonovic
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field σ we may proceed as follows

Z =
∫

dψdψ̄σeψ̄(D+σ )ψ−σ 2/2u (11)

=
∫

dσeN T rln(D+σ )−σ 2/2u (12)

Using the largeness of N , one does the σ integral by saddle point. If there is any
symmetry breaking in σ , this is a reliable way to see it and to to study it.

In our problem, D would stand for the kinetic energy of noninteracting electrons
in the dot. Although there were N = g fermion labels (α), they were not related
by symmetry to begin with, so that the appearance of an N in front of the Tr Ln
was not a given. However if one did the Tr Ln order by order in σ and used self
averaging as in the one loop flow, one would find a g2 in front, playing the role
of N .

Since we have a large N theory here it follows that as in all large N theories,
the one-loop flow and the new fixed point at strong coupling are parts of the
final theory. However the exact location of the critical point cannot be predicted,
as pointed out to us by Professor Piet Brower. The reason is that the Landau
couplings um are defined at a scale EL much higher than ET (but much smaller
than EF) and their flow till we come down to ET, where our analysis begins, is not
within the regime we can control. In other words we can locate u∗ in terms of what
couplings we begin with at ET, but these are the Landau parameters renormalized
in a nonuniversal way as we come down from EL to ET.

What is the nature of the state for um ≤ u∗
m?

In the strong coupling region σ acquires an expectation value in the ground state.
The dynamics of the fermions is affected by this variable in many ways: quasi-
particle widths become broad very quickly above the Fermi energy, the second
difference �2 has occasionally very large values and can even be negative,2 and
the system behaves like one with broken time-reversal symmetry if m is odd.(14)

Long ago Pomeranchuk(15) found that if a Landau function of a pure system
exceeded a certain value, the fermi surface underwent a shape transformation from
a circle to an non-rotationally invariant form. Recently this transition has received
a lot of attention(16−17) The transition in question is a disordered version of the
same. Details are given in refs. 13 and 14.

Details aside, there is another very interesting point: even if the coupling
does not take us over to the strong-coupling phase, we can see vestiges of the
critical point u∗

m and associated critical phenomena. This is a general feature of

2 How can the cost of adding one particle be negative (after removing the charging energy)? The answer
is that adding a new particle sometimes lowers the energy of the collective variable which has a life
of its own. However, if we turn a blind eye to it and attribute all the energy to the single particle
excitations, �2 can be negative.
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Fig. 2. The generic phase diagram for a second-order quantum phase transition. The horizontal axis
represents the coupling constant which can be tuned to take one across the transition. The vertical axis
is usually the temperature in bulk quantum systems, but is 1/g here, since in our system one of the
roles played by g is that of the inverse temperature.

many quantum critical points,(18) i.e., points like u∗
m where as a variable in a

hamiltonian is varied, the system enters a new phase (in contrast to transitions
wherein temperature T is the control parameter).

Figure 2 shows what happens in a generic situation. On the x-axis a variable
(um in our case) along which the quantum phase transition occurs. Along y is
measured a new variable, usually temperature T . Let us consider that case first. If
we move from right to left at some value of T , we will first encounter physics of the
weak-coupling phase determined by the weak-coupling fixed point at the origin.
Then we cross into the critical fan (delineated by the V -shaped dotted lines),
where the physics is controlled by the quantum critical point. In other words we
can tell there is a critical point on the x -axis without actually traversing it. As we
move further to the left, we reach the strongly-coupled symmetry-broken phase,
with a non-zero order parameter.

It can be shown that in our problem, 1/g2 plays the role of T . That is, g2 stands
in front of the effective action for σ . Here g also enters at a subdominant level
inside the action, which makes it hard to predict the exact shape of the critical fan.
The bottom line is that we can see the critical point at finite 1/g. In addition one
can also raise temperature or bias voltage to see the critical fan.

Subsequent work has shown, in more familiar examples that Landau interac-
tions, that the general picture depicted here is true in the large g limit: upon
adding sufficiently strong interactions the Universal Hamiltonian gives way to
other descriptions with broken symmetry.(19)

I mentioned that the critical point u∗ (a nonuniversal quantity) cannot be reliably
predicted in the large g limit. It now is clear from numerical work that it coincides
with the bulk coupling for the Pomeranchuk transition. In other words, when we
cross over to the left u∗, the size of the order parameter very rapidly grows from
the mesoscopic scale of order ET to something of order the Fermi energy. However
the physics in the critical fan as well as the weak coupling side is as described by
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our RMT+RG analysis. The strong coupling side has to be reworked from scratch
since the Fermi surface assumed in the RG that came down to ET is has suffered
huge deformations (in the scale of ET).

You can find additional details in my recent lectures in south Africa.(20)

To conclude, it is possible to understand interacting electrons in a quantum
dot of irregular shape by combining RMT and RG as long as the dot is large,
i.e., g → ∞. (Small dots that have large level spacings behave more like atoms
and cannot be handled in the present scheme.) The RG allows us to understand
the Universal Hamiltonian as fixed point for a range of couplings, a view I find
more satisfactory that those based other considerations. The u versus 1/g phase
diagram allows us to explore a region not described by the Universal Hamiltonian
without having to go to couplings as large as the critical coupling. We should of
course remember that at strong coupling there are other possibilities besides the
Pomeranchuk phase described here. It will be very interesting if experimentalists
could be induced to study strongly interacting dots, a possibility more readily
realized in dots than in the bulk since electron density in can be controlled by
gates. Stay tuned as we await this.

I am grateful to the National science Foundation for grant DMR-0354517 that
made this research possible.
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